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UPPER AND LOWER BOUNDS OF 
THE VALENCE-FUNCTIONAL 

BY 

PETER GRITZMANN 

ABSTRACT 

For the non-negative integer g let (M,g) denote the closed orientable 2- 
dimensional manifold of genus g. K-realizations ~ of (M,g) are geometric 
cell-complexes in R 3 with convex facets such that set (~) is homeomorphic to M. 
For K-realizations ~ of (M,g) and vertices v of ~, val (v ,~)  denotes the 
number of edges of ~ incident with v and the weighted vertex-number 
E(val(o, ~ ) - 3 )  taken over all vertices of ~ is called valence-value v ( ~ )  of ~.  
The valence-functional V, which is important for the determination of all 
possible ]'-vectors of K-realisations of (M,g), in connection with Eberhard's 
problem etc., is defined by V(g): = min[o(~) l  ~ is a K-realization of (M,g)]. 
The aim of the note is to prove the inequality 2g + 1 =< V(g) =< 3g + 3 for every 
positive integer g. 

1. Introduction 

For the non-negative integer g let (M,g) denote the closed orientable 

2-dimensional manifold of genus g. K-realizations ~ of (M,g) are geometric 

cell-complexes in R 3 with convex facets such that set(@) is homeomorphic to M. 

The 2-dimensional sphere can be realized as a convex polytope in R 3, where 

every vertex is convex in the sense that at least one of the two components into 

which the set of the cell-complex divides a sufficiently small ball centered at the 

vertex is convex. This property characterizes genus 0. 

In [2] and [3] the minimal number H(g) of non-convex vertices of K- 

realizations of (M,g) is considered. Barnette proves H(g)=<7 and in [3] the 

existence of K-realization of (M,g) with at most six non-convex vertices is 

shown for every positive integer g. 

These results show that it is in fact possible to characterize the topological 

property of M to be a sphere by means of the geometric functional H, however, 

H(g) is not the appropriate subject to get extensive characterizations for g ~  0. 
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Therefore we consider a functional which is more suitable for this purpose and 

which is furthermore important for several problems such as the determination 

of all possible f-vectors of K-realizations of (M,g) or in connection with 

Eberhard's problem. 

Let ~ be a K-realization of (M, g). For vertices v of ~ let val (v, ~ )  denote the 

number of edges of ~ being incident with v. 

Then we have v a l ( v , ~ ) =  3 and we define the valence-value v ( ~ )  of ~ to be 

the weighted vertex-number E(val(v, 3~) - 3) taken over all vertices of ~. 

Since we want to obtain results which characterize the genus g rather than 

some special K-realizations of (M,g) we define the valence-functional V(g) to 

be the minimum of all v (~) ,  i.e. 

V(g): = min[v(~)]  ~ is a K-realization of (M,g)].  

For given g the valence-functional measures the "minimal valence-distance" 

between K-realizations of (M, g) and simple realizations, where all the vertices 

are 3-valent. Since H(g)<= V(g) the sphere is characterized by the property 

V ( g )  = O. 
In this note we prove that there is a "linear correspondence" between g and 

V(g): for every positive integer the inequality 2g + 1 _-__ V(g)<= 3g +3  holds. 

2. Preliminary definitions and results 

Our notation mainly follows the terminology of [5]. 

Let ~ be a 2-dimensional cell-complex in R 3 with convex facets. For i = 0,1,2 

F~(M) denotes the set of /-dimensional faces of s~ and f~(~) its cardinality. 

Suppose B :  = bd(conv(set(,,~))) and let ~ be a K-realization of (M,0) with 

set (~)  = B. 

is called associated with o~, if F o ( ~ ) C F o ( ~ )  and if every face of 

belonging to B is a face of ~ too. S 2 denotes the 2-dimensional unit sphere in R 3 

and for z E S  ~, p E R  3, H(z,p) indicates the hyperplane {x Ix ~R3A (z,x) = 

(z,p)}, H§ H-(z,p) the closed halfspace {x ] x ~ R 3 A (Z, X) => (z,p)}, 

{X IX ~ R 3 A (Z,X)<= (z,p)}, respectively. 

Now we introduce the "index of a vertex" which has been considered by 

Banchoff in [1] in a slightly different way. 

Suppose @ to be a K-realization of (M,g) and let S(@) be the set of all 

directions z of S ~ for which all the hyperplanes H(z,p) meet at most one vertex 

of 9 ~. For every v E Fo(~) and z ES(@) let~(P;z,v) denote the set of all facets 

of s t ( v ,~ )  which meet H(z,v) in more than one point. Then we define 
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w~ (z, v ) :=  7r (2-card(~(~;  z, v))). 

Let 9;1 be the set of edges of 9 incident with v and contained in H+(z,v) and ~2 

the set of facets of st(v, ~ )  contained in H+(z, v). Since l ink(v ,~)  is topologi- 

cally a circle we have 

2 card (~;1) = card (q3(~; z, v)) + 2 card (~2), 

thus card (q3(~; z, v)) is even and 

w~ (z, v) = 2~-(1 - card (if;i) + card (~2)). 

This equality yields 

w , ( z , v )  = 
VEFO(~) 

which shows that w~, (z, v) is essentially a partitioning of the Euler-characteristic 

h ' (~)  of ~ on its vertices. 

Let ~ be a K-realization associated with 9 .  The functional w~, ~ (z, v) defined 

by 

I w~(z,v)-w~(z,v)  if v E F o ( ~ )  

(z,v): w~,~ 

w~,(z, v) if v ~ Fo(~) 

is called the index of v 

Obviously we have 

relative to 9 ~ and 9~ in direction z. 

we,.~(z,v)= -4~rg. 
vEFo(~) 

For a convex vertex v of 9 ,  w~,(z, v) is non-negative. Since w~ (z, v) = 27r - -  this 

is equivalent to the fact that H(z, v) supports set(G) at v - -  implies w~(z, v)= 
2zr, the index w~.~ (z,v) of a convex vertex is non-negative. 

3. Bounds for the valence-functional 

We are now going to prove that there is a "linear correspondence" between g 

and V(g). The proof of the following theorem employs one lemma. 

LEMMA. Let ~ be a K-realization of (M,g), ~ a K-realization of (M,O) 
associated with ~ and v a non-convex 4-valent vertex of ~. Then there exists a 

direction z of S(~)  such that w~,~(z, v)>= O. 

PROOF. Let f be a facet of st(v, ~ ) ,  the angle at v of which is less than ~" and 
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z an element of S(~), such that f CH§ v). Then card(~3(@;z, v)) =< 3 and since 

this number is even we have card(~3(@;z,v))= < 2. 

This implies w~ (z, v) = 7r (2-card(~3(~; z, v ))) = 0. Since w~ (z, v) = 2~r implies 

w~,(z, v ) =  2~r, we have w~,~ (z, v)=> 0 which proves the lemma. 

We give the upper bounds for V(g) by constructing special K-realizations of 

(M,g) for every positive integer g where we need the well known process of 

cutting off a vertex. If ~ is a K-realization of (M, g) and E a set of convex 

vertices of ~ let us call any K-realization of (M, g) constructed in a successive 

process of cutting ott the vertices of E E-truncation of ~. 

THEOREM. Let g be an integer with g >= 1. Then 2g + 1 <= V (g ) ~ 3g + 3. 

This theorem shows the close relationship between g and V(g). Though, it 

does not mean that the number of vertices which are more than 3-valent 

increases with increasing g. Surprisingly, this is not even true. Cutting off all 

convex vertices of the K-realization of (M,g) constructed in [3] to prove 

H(g)_-< 6 shows the existence of a K-realization of (M, g), all but six vertices of 

which are 3-valent. 

PROOF OF THE THEOREM. We start with the proof of the inequality from 

below. Let ~ be a K-realization of (M, g), :~ a K-realization of (M,0) associated 

with ~ and z E S(~). For every non-negative integer/" we define 

wj(~):  = card({v Iv E Fo(~) ^ w~,, (z,v) = 2Ir(1 - j)}). 

Since E~Fo~,~ w~.~(z, v) = -- 47rg, we get 

q -  0w,( )=2g 
i_~0 

and furthermore 

v ( ~ ) =  > ~] ( 2 j - 3 ) w , ( ~ )  
j~2 

= 2  ~ ( j -  1 ) w , ( ~ ) -  ~ w,(~) 
1=-2 i~2 

=4g + 2wo(~ ) -  ~, wj(~). 
j~2 

In consequence of 

wj(~) _----- 2g + w0(~) 
j~2 
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we get v (~)=>2g  + Wo(~), thus 

v(~)_->2g. 

In case of equality every non-convex vertex v is 4-valent and for each z @ S(@) 

we get w~. ~ (z, v) = - 2rr. This is a contradiction to the preceding Iemma, which 

yields 2g + 1 =< V(g).  

To prove the second inequality, for every positive integer g we construct a 

K-realization of (M,g) with valence-value 3g +3.  For g = 1 it is very easy to 

construct such a K-realization starting with the well-known triangular picture 

frame, so we assume g _-> 2. 

The idea of the proof is to consider a 3-polytope in R 3, construct another 

3-polytope nicely situated inside the first one and take it away to generate the 

"holes" of the manifold. Let S denote a simplicial 3-polytope in R 3 with 

0 E int (S), 90 its boundary complex. We point out that S is homeomorphic to a 

3-ball, whereas 90 is a K-realization of the sphere. Since the number of facets of a 

simpliciai 3-polytope, which is closely related to the genus of the manifold we 

want to construct, is always even we have to distinguish between odd and even 

genera. 

In the first case let g be odd and [o(5e) = *z(g + 5). Then we get f,(Sr = a2(g + 1) 

and f2(5r = g + 1. We now construct a polytope R, inside S by cutting off the 

edges of S. The following considerations are valid for a sufficiently small positive 

real e. Let 5e, denote the boundary complex of the dilatation body (1 - e)S of S 

which will be denoted by &. 9~ is isomorphic to .9 o in a natural way and we mark 

the faces of S ~ corresponding to the faces of b ~ they are associated with by the 

index e. For every edge e~ of F,(.9'~) let He. denote a hyperplane supporting &, 

such that H,. N & = e,. and H~- the associated halfspace not containing e. 

We can use these hyperplanes to cut off the edges of S and define / ? , :=  

Let ~ denote the boundary complex of /~ , .  Then ~ ,  is a K-realization of the 

sphere with fo(~,) = fo(O ~ + 3/2(50, all the vertices of Fo(~,) \ Fo(Se~) being 

3-valent. In cutting off those vertices of o~, which belong to Fo(Se~ ), we obtain the 

boundary complex ~ ,  of a simple polytope R,  such that Fo (~0  \ Fo(~,) C int (S). 

We now construct a K-realization of (M, g). De f ine /5  := bd(S \ int(R0)  and 

let ~ ,  denote the "natural" K-realization o f / 5 ,  that is 

F , (~ , )  = Fl(a 6~ to F , (~I )  

tO {e ] e C/5, ^ :Iv,, v2 : v, E / 5  ^ v= E Fo(Se) ^ e = conv({v,, v2}) 

^ conv({v,, v~.,}) ~ F,(~,)}.  
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One can easily see that ffl is a K-realization of (M,g). To decrease the 

valence-value, we replace ~1 by its F0(~)-truncation ~t.  All the vertices of 
~ in F0(~)fq  bd(S) are 4-valent, whereas all the other vertices of ~l are 

3-valent, thus v ( ~ )  = 3/2(5e) = 3g + 3 and ~ is the aspired K-realization in the 

case of odd g. 

Figure 1 shows a K-realization ~ of (M,7) with v ( ~ ) - - 2 4 .  

Now we consider the case that g is even and suppose f0(Se) = ~(g + 6). Let f be 

a facet of ~e, H a hyperplane lying (strictly) between affff) and aft(/,) and let H -  

denote the closed halfspace of H containing [,. Let/~2 : = / ~  N H -  and ~2 its 

boundary complex. The F0(Se,)-truncation ~2 of ~2 is again the boundary 

complex of a simple polytope. If we now construct ~2 corresponding to the 

construction of @~, ~2 has the aspired properties which completes the proof of 

the theorem. 

It can be shown that for g = 1,2 the given.lower bounds for V(g) are not best 

possible. In fact, by means of extensive geometrical arguments it is proved in [3] 

that the lower bounds can be replaced by 6, which especially yields the exact 

value of V(1). 

Fig. 1. K-realization ~, of (M,7)with v(~l)=24. 
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4. Remarks  

If ~ is a K-realization of (M,g) it is easily seen that the equality f2(~)-- 
�89189 holds. This shows the importance of the valence- 
functional in connection with the determination of all possible ]'-vectors of 
K-realizations of (M, g). Indeed, the result V(1)--6 is sufficient to characterize 

the ].-vectors of K-realizations of the torus (cf. [3], [4]). 
The valence-functional is important for some other questions, too. If we ask, 

for instance, if K-realizations ~ of (M, g) exist such that for every integer j with 
j => 3 the number pj(~) of j-gons of ~ equals a prescribed number, we are led to 

the problem of determining V(g), too, because of the easy combinatorial 
equality 

3p3(~)+2p4(~)+ps(~) = 12(1- g ) + 2 v ( ~ ) +  ~ ( j - 6 ) p / ( ~ ) .  
j_~7 

Lower bounds for V(g) yield necessary conditions for this problem, too. 
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